refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 56 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE13125
Identification of PU.1 target genes by expression profiling of PUER cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

PU.1 is a key transcription factor for macrophage differentiation. Novel PU.1 target genes were identified by mRNA profiling of PU.1-deficient progenitor cells (PUER) before and after PU.1 activation. We used two different types of Affymetrix DNA-microarrays (430 2.0 arrays and ST 1.0 exon arrays) to characterize the global PU.1-regulated transcriptional program underlying the early processes of macrophage differentiation.

Publication Title

Transcriptomic profiling identifies a PU.1 regulatory network in macrophages.

Alternate Accession IDs

E-GEOD-13125

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16195
Expression profiling of joint tissue from C3H and interval specific congenic mouse lines post- B. burgdorferi infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi

Publication Title

Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.

Alternate Accession IDs

E-GEOD-16195

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30747
AML mouse models
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Alternate Accession IDs

E-GEOD-30747

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30746
Expression data from murine Tet-off MLL-AF9/Ras acute myeloid leukemia cell lines following withdrawal of MLL-AF9
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

To explore oncogene addiction programs in a genetically defined leukemia context we developed an AML mouse model driven by a conditional MLL-AF9 allele together with oncogenic Ras, which enabled us to examine the consequences of MLL-AF9 inhibition in established disease. In order to produce a tightly regulated system that was easy to monitor, we constructed two retroviral vectors containing dsRed-linked MLL-AF9 under control of a tetracycline response element promoter, and KrasG12D or NrasG12D linked to the Tet-off tet-transactivator, which activates TRE expression in a doxycycline repressible manner. Leukemias were generated by retroviral cotransduction of both vectors into hematopoietic stem and progenitor cells, which were transplanted into syngeneic mice. Cells harboring both constructs induced aggressive myelomonocytic leukemia. Five independent primary leukemia cell lines were established from bone marrow of terminal mice. Treatment of these lines with doxycycline rapidly turned off MLL-AF9 expression, and induced terminal myeloid differentiation and complete disease remission in vivo.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Alternate Accession IDs

E-GEOD-30746

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30745
Expression data from murine acute myeloid leukemia (AML) cells following shRNA-mediated suppression of Myb
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Using an integrative approach combining a Tet-off conditional AML mouse model, global expression profiling following suppression of the driving MLL-AF9 oncogene, and a new Tet-on conditional shRNA expression system we have identified Myb as critical mediator of addiction to MLL-AF9. Suppression of Myb in established AML in vivo terminates aberrant self-renewal and triggers a terminal myeloid differentiation program that precisely phenocopies the effects of suppressing MLL-AF9. Remarkably, suppressing Myb effectively eradicates aggressive and chemotherapy resistant AML.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Alternate Accession IDs

E-GEOD-30745

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18737
Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Alternate Accession IDs

E-GEOD-18737

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18669
Analysis of murine hematopoieitic stem cells, multipotent progenitors, PreMegE progenitors and mature CD4+ T cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

An investigation of the global gene expression signatures of murine hematopoietic stem cell differentiation during steady state hematopoiesis.

Publication Title

Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Alternate Accession IDs

E-GEOD-18669

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15955
Expression data from colon epithelium of STAT3IEC-KO in acute DSS colitis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

STAT3 is a pleiotropic transcription factor with important functions in cytokine signalling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. Here we demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IEC). Studies in genetically engineered mice showed that epithelial STAT3 activation in DSS colitis is dependent on IL-22 rather than IL-6. IL-22 was secreted by colonic CD11c+ cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3IEC-KO mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis and pathways associated with wound healing in IEC. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

Publication Title

STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing.

Alternate Accession IDs

E-GEOD-15955

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18500
Mast cells in response to some pathogens elicit a transcriptional program devoid of type I IFN response
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon

Description

Although mast cells elicit proinflammatory and type I IFN responses upon VSV infection, in response to L.monocytogenes (L.m) or S. Typhimurium (S.t), such cells elicit a transcriptional program devoid of type I IFN response.

Publication Title

Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria.

Alternate Accession IDs

E-GEOD-18500

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18460
Lactobacillus acidophilus induces virus immune defense genes in murine dendritic cells by a TLR-2 dependent mechanism
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Lactobacilli are probiotics that, among other health promoting effects, have been ascribed immunostimulating and virus preventive properties. Certain lactobacilli species have been shown to possess strong IL-12 inducing properties. As IL-12 production depends on the up-regulation of type I interferons, we hypothesized that the strong IL-12 inducing capacity of L. acidophilus NCFM in murine bone marrow derived DC is caused by an up-regulation of IFN-, which subsequently stimulates the induction of IL-12 and the dsRNA binding toll like receptor (TLR)-3. The expression of the genes encoding IFN-, IL-12, IL-10 and TLR-3 in DC upon stimulation with L. acidophilus NCFM was measured. L. acidophilus NCFM induced a much stronger expression of ifn-, il-12 and il-10 compared to the synthetic dsRNA ligand Poly I:C, whereas the levels of expressed tlr-3 were similar. By the use of whole genome microarray gene expression, we investigated whether other genes related to the viral defence were up-regulated in DC upon stimulation with L. acidophilus NCFM and found that various virus defence related genes, both early and late, were among the strongest up-regulated genes. The IFN- stimulating capability was also detected in another L. acidophilus strain, but was not a property of other probiotic bacteria tested (B. bifidum and E. coli nissle).The IFN- inducing capacity was markedly reduced in TLR-2 -/- DCs, dependent on endocytosis and the major cause of the induction of il-12 and tlr-3 in L. acidophilus NCFM stimulated cells. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DC in a TLR-2 manner through induction of IFN- .

Publication Title

Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism.

Alternate Accession IDs

E-GEOD-18460

Sample Metadata Fields

Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0