refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE29072
Zebularine effect on mouse embryonic stem cells manifested as cardiod-myogenic potential: testable hypothesis generation using microarray data
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Lineage commitment during Embryonic Stem Cells (ESCs) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Moreover, the DNA demethylation agent 5-Aza-2-deoxycytidine (AzadC) has been widely described in the literature as an effective chemical stimulus used to promote cardiomyogenic differentiation in various stem cell types; however, its toxicity and instability complicate its use. Thus, the purpose of this study was to examine the effects of zebularine, a stable and non-toxic DNA cytosine methylation inhibitor, on ESCs differentiation. Herein are the Affymetrix Expression data obtained from RNA of murine ESCs treated with zebularine.

Publication Title

Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment.

Alternate Accession IDs

E-GEOD-29072

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE13235
Gene expression profile of mouse embryonic stem cells (D3-pOCT-mESC) grown in low concentrations of nitric oxide
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

In order to identify the genes regulated in mouse embryonic stem cells (mESC) by the effect of low concentrations of nitric oxide (NO), we analysed the transcriptome of cells treated with NO and compared it to those of cells cultured in the absence of leukemia inhibitory factor (LIF), and in the presence of LIF. We used the cell line D3-pOct4, which carries the enhanced Green Fluorescence Protein gene (eGFP) under the control of the Oct-4 promotor. This line is continuously maintained in the undifferentiated state in the presence of LIF, in comparison with the wild type line .

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-13235

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54622
Comparative gene expression profile of Hes1-overexpressing cultured hippocampal neurons vs the corresponding control populations (neurons expressing GFP)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Homologue of Enhancer-of-split 1 (Hes1) is a transcription factor that regulates neuronal plasticity, promoting the growth of dendrites and increasing the GABAergic input. A higher expression of Hes1 also results in neuronal resistance against the noxious activity of amyloid beta, the main agent in the advent and progression of the Alzheimer's disease. As a transcription factor, Hes1 controls de expression of many genes. Using the microarray technology we have detected that the expression of one secreted synaptic protein, cerebellin 4 (Cbln4) was particularly increased upon overexpression of Hes1. We also present evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections and that either overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities and rescued neurons from amyloid beta induced cell death.

Publication Title

Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity.

Alternate Accession IDs

E-GEOD-54622

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0