refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 329 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE14769
Time course of bone marrow-derived macrophages simulated with LPS
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon

Description

The innate immune system is a two-edged sword; it is absolutely required for host defense against infection, but if left uncontrolled can trigger a plethora of inflammatory diseases. Here we used systems biology approaches to predict and validate a gene regulatory network involving a dynamic interplay between the transcription factors NF-B, C/EBP, and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of Il6 and Cebpd genes and experimentally validated the prediction that the combination of an initiator (NF-B), an amplifier (C/EBP) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.

Publication Title

Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals.

Alternate Accession IDs

E-GEOD-14769

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26069
Inducible Astrocytomas in Genetically Engineered Mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evolutionary etiology of high-grade astrocytomas.

Alternate Accession IDs

E-GEOD-26069

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE26002
Inducible Astrocytomas in Genetically Engineered Mice: Affymetrix
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

To determine the regulatory pathways necessary for astrocytoma formation within complex adult brain microenvironments, we engineered mice for adult astrocyte-specific disruption of key regulators (pRb, Kras and Pten). Drivers of all astrocytoma grades were identified using CreERTM-inducible alleles. Inactivation of pRb was necessary to initiate grade II disease, and was the only lesion to do so. Additional activation of Kras progressed disease to grade III, while further Pten inactivation facilitated grade IV (glioblastoma) progression. These outcomes were elicited whether somatic events were induced broadly or focally. In vivo inactivation of pRb, which induced astrocyte proliferation and apoptosis, activated the MAPK pathway, while Kras activation and Pten loss triggered PI3K pathways.

Publication Title

Evolutionary etiology of high-grade astrocytomas.

Alternate Accession IDs

E-GEOD-26002

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE10216
Emx2 knock-out urogenital epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Series of samples studying effect of knock out Emx2 in urogenital epithelium of mouse embryos at E10.5.

Publication Title

Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads.

Alternate Accession IDs

E-GEOD-10216

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28391
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis
  • organism-icon Gallus gallus, Xenopus laevis, Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates.

Publication Title

Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis.

Alternate Accession IDs

E-GEOD-28391

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE28389
[E-MTAB-368] Transcription profiling by array of mouse embryos at 8 different stages
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon

Description

Transcription profiling of mouse development

Publication Title

Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis.

Alternate Accession IDs

E-GEOD-28389

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Alternate Accession IDs

GSE90997

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Alternate Accession IDs

GSE90997

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Alternate Accession IDs

GSE90997

Sample Metadata Fields

Genetic information, Subject

View Samples
accession-icon SRP094706
CHD1 in yeast is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes [RNA-seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report quantitative transcriptome data in WT and CHD1 mutant. Overall design: RNA-seq in wild-type and CHD1 mutant.

Publication Title

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes.

Alternate Accession IDs

GSE90997

Sample Metadata Fields

Genetic information, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0