refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 294 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE63860
Chronological expression data from mouse skeletal muscle stem cells
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon

Description

Satellite cells are the primary source of stem cells for skeletal muscle growth and regeneration. Since adult stem cell maintenance involves a fine balance between intrinsic and extrinsic mechanisms, we performed genome-wide chronological expression profiling to identify the transcriptomic changes involved in acquisition of muscle stem cell characteristics.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-63860

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9098
Estrogen-modulated gene expression in c-kit+ stem cells and CD44+ stromal cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

The recent interest in the role of bone marrow derived endothelial progenitor cells in the benefits of estrogen on cardiovascular health brought us to evaluate if estrogen could affect cardiac repair more broadly by regulating biological processes involved in the functional organization of the bone marrow stem cell niche.

Publication Title

Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: identification of specific biological processes involved in the functional organization of the stem cell niche.

Alternate Accession IDs

E-GEOD-9098

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE54886
Susceptibility to photo-oxidative damage of mice lacking the Rod derived Cone Viability Factor gene Nxnl1
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Rod-derived Cone Viability Factor is a trophic factor of the thioredoxins family that promotes the survival of cone photoreceptors. It is encoded by the nucleoredoxin-like gene 1 Nxnl1 which also encodes by alternative splicing for RdCVFL, for a thioredoxin enzyme that interacts with the protein TAU. The role of thioredoxins in the defense mechanism against oxidation led us to examine the retinal phenotype of the Nxnl1-/- mouse after photo-oxidative stress.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-54886

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70763
Gene profiling of naive, virus-induced and inflammatory-induced memory CD8 T lymphocytes in homeostatic condition and after stimulation.
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

Transcriptome analysis comparing naive, protective and non-protective spleen memory CD8 T lymphocytes were conducted to identify key functions associated with memory CD8-mediated immune protection. Memory CD8 T cells generated in response to influenza or vaccinia infection (Flu-memory and VV-memory) were compared to inflammatory memory cells (TIM) that were generated by peptide in inflammatory context. Gene expression analysis was performed on quiescent and re-stimulated CD8 T cells.

Publication Title

Immune signatures of protective spleen memory CD8 T cells.

Alternate Accession IDs

E-GEOD-70763

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56236
Glomerular transcriptomic analysis of the influence of Genetic background effect during anti-GBM glomerulonephritis in mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

We analyzed the impact of the genetic background during experimental passive non-accelerated anti-glomerular basement membrane glomerulonephritis (anti-GBM-GN) (an equivalent to nephrotoxic nephritis) in two different mouse genetic backgrounds (C57BL6/J vs 129S2svPAS/crl).

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-56236

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE36437
Expression data from caudal artery of Notch3WT and Notch3KO mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch3 is a transmembrane receptor which is critically important for the structure and myogenic response of distal arteries, particularly cerebral arteries. After activation of the receptor, the intracellular domain translocates in the nucleus to activate target genes transcription.

Publication Title

Transcriptome analysis for Notch3 target genes identifies Grip2 as a novel regulator of myogenic response in the cerebrovasculature.

Alternate Accession IDs

E-GEOD-36437

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE13229
Comparison of mouse NK cell subsets defined by CD27 and CD11b expression
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Previous reports have defined three subsets of mouse NK cells on the basis of the expression of CD27 and CD11b. The developmental relationship between these subsets was unclear. To address this issue, we evaluated the overall proximity between mouse NK cell subsets defined by CD27 and CD11b expression using pangenomic gene expression profiling. The results suggest that CD27+CD11b-, CD27+CD11b+ and CD27-CD11b+ correspond to three different intermediates stages of NK cell development.

Publication Title

Maturation of mouse NK cells is a 4-stage developmental program.

Alternate Accession IDs

E-GEOD-13229

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE96849
SAGA Is a General Cofactor for RNA Polymerase II Transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SAGA co-activator has been implicated in the regulation of a smal subset of genes in budding yeast in transcriptomic analyses performed in steady-state levels of RNA.

Publication Title

SAGA Is a General Cofactor for RNA Polymerase II Transcription.

Alternate Accession IDs

E-GEOD-96849

Sample Metadata Fields

Genetic information

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0