refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 981 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE41164
Expression data from splenic B-cells isolated from DmU50(HG-b) mice or wild-type C57BL/6J
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Box C/D-type small nucleolar RNAs (snoRNAs) are functional RNAs responsible for mediating 2-O-ribose methylation of ribosomal RNAs (rRNAs) within the nucleolus. Previously, in relation to a novel chromosomal translocation in a human B-cell lymphoma, we identified U50HG, a non-protein-coding gene that hosted a box C/D-type U50 snoRNA within its intron. To investigate the physiological importance of the U50 snoRNA and its involvement in tumorigenesis, we generated a mouse model deficient in mouse U50 (mU50) snoRNA expression without altering the expression of mouse mU50 host-gene, mU50HG-b. The established mU50 snoRNA-deficient mice showed a significant reduction of mU50 snoRNA expression and the corresponding target rRNA methylation in various organs. Lifelong phenotypic monitoring showed that the mU50-deficient mice looked almost normal without accelerated tumorigenicity; however, a notable difference was the propensity for anomalies in the lymphoid organs.

Publication Title

Generation of a mouse model with down-regulated U50 snoRNA (SNORD50) expression and its organ-specific phenotypic modulation.

Alternate Accession IDs

E-GEOD-41164

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19488
Down-regulated Genes in Mouse Dental Papillae and Pulp
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Goal of experiment: Identify genes down-regulated between pre- and post-natal stages in mouse dental papillae.

Publication Title

Down-regulated genes in mouse dental papillae and pulp.

Alternate Accession IDs

E-GEOD-19488

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28447
Expression data from transgenic mice overexpressing RXR-gamma in the skeletal muscle (RXR-gamma mice)
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Retinoid X receptor (RXR)-gamma is a nuclear receptor-type transcription factor expressed mostly in the skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXR-gamma in the skeletal muscle (RXR-gamma mice), which showed lower blood glucose than the control mice. We used microarrays to investigate their glucose metabolism gene expression change.

Publication Title

Increased systemic glucose tolerance with increased muscle glucose uptake in transgenic mice overexpressing RXRγ in skeletal muscle.

Alternate Accession IDs

E-GEOD-28447

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE9428
T cell-suppression by programmed cell death 1 ligand 1(PD-L1) on IFNg-treated retinal pigment epithelial cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Adult (6- to 8-week-old) C57BL/6 purchased from CLEA Japan Inc. (Tokyo, Japan) were used as donors ocular pigment epithelium (PE). To cultivate retinal PE (RPE) eyes were cut into two parts along a circumferential line posterior to the ciliary process, creating a ciliary body-deficient posterior eyecup. The eyecup was then incubated in 0.2% trypsin (Biowhitaker) for 1 hr. These tissues were triturated to make a single cell suspension, and then re-suspended in the medium.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-9428

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22877
Retinal pigment epithelial cells suppress interleukin-17-producing T-helper 17 cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

T cells that encounter cultured ocular pigment epithelial cells in vitro are inhibited from undergoing T cell receptor-triggered activation. Because retinal pigment epithelial (RPE) cells are able to suppress T-cell activation, we studied whether RPE cells could suppress cytokine production by activated T helper (Th) cells. In this study we showed that primary cultured RPE cells greatly suppressed activation of bystander CD4+ T cells in vitro, especially the cytokine production by the target T helper cells (Th1 cells, Th2 cells, Th17 cells, but not Th3 cells). Cultured RPE cells and RPE-supernatants significantly suppressed IL-17 producing CD4+ T cells, and RPE cells fully suppressed polarized Th17 cell lines that induced by recombinant proteins, IL-6 and TGFb2. Moreover, RPE cells failed to suppress IL-17 producing T cells in the presence of rIL-6. In addition, Th17 cells exposed to RPE were suppressed via TGFb, which produce RPE cells. These results indicate that retinal PE cells have immunosuppressive capacity in order to inhibit Th17-type effector T cells. Thus, ocular resident cells play a role in establishing immune regulation in the eye.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-22877

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE19402
Gene expression data from hippocampus, striatum, hypothalamus cortex, Drd2-MSNs and Drd1-MSNs in mice
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon

Description

Goal of the experiment: Analysis of gene expression changes in the cortex, striatum, hippocampus, hypothalamus, Drd2-MSNs and Drd1-MSNs of mice with a postnatal, neuron-specific ablation of GLP or G9a as compared to control mice.

Publication Title

Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex.

Alternate Accession IDs

E-GEOD-19402

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32355
E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells
  • organism-icon Mus musculus
  • sample-icon 101 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Canonical and atypical E2Fs regulate the mammalian endocycle.

Alternate Accession IDs

E-GEOD-32355

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56009
E2f and Myc transcriptional programs and chromatin binding landscapes in the small intestines
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Redeployment of Myc and E2f1-3 drives Rb-deficient cell cycles.

Alternate Accession IDs

E-GEOD-56009

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32082
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

Alternate Accession IDs

E-GEOD-32082

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE32354
Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null liver (Affymetrix)
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon

Description

To understand the underlying cause and mechanisms of changes in hepatocyte ploidy upon Albumin-Cre mediated deletion of E2f7&8 and Mx1-Cre mediated deletion of E2f1,2&3, we analysed global gene expression of 6 weeks and 2 months liver tissues.

Publication Title

Canonical and atypical E2Fs regulate the mammalian endocycle.

Alternate Accession IDs

E-GEOD-32354

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0