refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE106155
Comparison of mRNA expression between wildtype and Wnt9bcneo/cneo E15.5 urogenital systems.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Wnt9b is expressed in the ureteric bud of the kidney at all stages of development. The Wnt9b cneo allele functions as a partial loss of function. Wnt9bcneo/cneo mutant kidneys initially develop normally but exhaust their nephron progenitor cells by E15.5. Here, we have compared expression between Wnt9bcneo/+ and Wnt9bcneo/cneo kidneys. Additional urogenital tissue (adrenal glands, reproductive tracts and bladder) may have been included in some samples.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-106155

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE106195
Comparison of mRNA expression between wildtype and Wnt9b-/- isolated metanphric mesenchyme from E11.5 kidneys.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Wnt9b is expressed in the ureteric bud of the kidney at all stages of development. In Wnt9b mutants, the ureteric bud forms but the metanephric mesenchyme is never induced to undergo differentiation.

Publication Title

Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells.

Alternate Accession IDs

E-GEOD-106195

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18567
Temporal profiling of gene expression in cochleae of wild type and alpha9 null mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

Efferent inhibition of cochlear outer hair cells is mediated by nicotinic cholinergic receptors containing alpha9 (a9) and alpha10 subunits. Mice lacking a9 nicotinic subunits fail to exhibit classic olivocochlear responses and are characterized by abnormal synaptic morphology at the base of outer hair cells. To detail molecular changes induced upon the loss of a9 subunit, we sampled cochlear RNA from wild type and a9 null mice at postnatal (P) days spanning periods of synapse formation and maturation (P3, P7, P13 and P60). Our findings point to a delay in cochlear maturation starting at the onset of hearing (P13), as well as an up-regulation of various GABA receptor subunits in adult mice lacking the a9 nicotinic subunit.

Publication Title

Lack of nAChR activity depresses cochlear maturation and up-regulates GABA system components: temporal profiling of gene expression in alpha9 null mice.

Alternate Accession IDs

E-GEOD-18567

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17023
Profiling gene expression in 32Dcl3 cells following Xbp1 retrovirus vector transfection
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

The significant changes of hematopoietic cells induced by Xbp1S expression indicate that there is global alteration in gene expression. UPR induces transcription of Xbp1, and phosphorylation of the ER transmembrane kinase IRE1 initiates UPR-mediated mRNA splicing of Xbp1, resulting in the production of Xbp1S, an active form of a basic leucine zipper transcription factor. In the present study, Xbp1S retrovirus vector infected 32cl3 cells show cell cycle arrest and myeloid differentiation. Xbp1S may modulate important genes of differentiation and the cell cycle.

Publication Title

No associated publication

Alternate Accession IDs

E-GEOD-17023

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65464
Changes in global gene expression in SIN1 knock-out murine epithelial fibroblasts
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

RNA from wt and SIN1 knock-out MEF cell lines were compared

Publication Title

mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1.

Alternate Accession IDs

E-GEOD-65464

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0