refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1163 results
Sort by

Filters

Organism

Technology

Platform

accession-icon GSE15268
Cell-context dependent Notch target genes
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling regulates a variety of developmental cell fates decisions in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the genes in the respective tissues that are directly activated by Notch.

Publication Title

Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors.

Alternate Accession IDs

E-GEOD-15268

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15129
Coenzyme Q10-dependent gene expression in SAMP1 mice tissues
  • organism-icon Mus musculus
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon

Description

Our present study reveals significant decelerating effects on senescence processes in middle-aged SAMP1 mice supplemented for 6 or 14 months with the reduced form (QH2, 500 mg/ kg BW/ day) of coenzyme Q10 (CoQ10). To unravel molecular mechanisms of these CoQ10 effects, a genome-wide transcript profiling in liver, heart, brain and kidney of SAMP1 mice supplemented with the reduced (QH2) or oxidized form of CoQ10 (Q10) was performed. Liver seems to be the main target tissue of CoQ10 intervention, followed by kidney, heart and brain. Stringent evaluation of the resulting data revealed that QH2 has a stronger impact on gene expression than Q10, which was primarily due to differences in the bioavailability. Indeed, we found that QH2 supplementation was more effective than Q10 to increase levels of CoQ10 in the liver of SAMP1 mice (54.92-fold and 30.36-fold, respectively). To identify functional and regulatory connections of the top 50 (p < 0.05) up- and down-regulated QH2-sensitive transcripts in liver (fold changes ranging from 21.24 to -6.12), text mining analysis (Genomatix BiblioSphere, GFG level B3) was used. Hereby, we identified 11 QH2-sensitive genes which are regulated by PPAR- and are primarily involved in cholesterol synthesis (e.g. HMGCS1, HMGCL, HMGCR), fat assimilation (FABP5), lipoprotein metabolism (PLTP) and inflammation (STAT-1). Thus, we provide evidence that QH2 is involved in the reduction of fat and cholesterol synthesis via modulation of the PPAR- signalling pathway. These data may explain, at least in part, the observed effects on decelerated age-dependent degeneration processes in QH2-supplemented SAMP1 mice.

Publication Title

Supplementation with the reduced form of Coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-alpha gene expression signature in SAMP1 mice.

Alternate Accession IDs

E-GEOD-15129

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE84767
Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource
  • organism-icon Mus musculus
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon

Description

The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids.

Publication Title

Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource.

Alternate Accession IDs

E-GEOD-84767

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE40540
IP of 5-hydroxymethylcytosine (5-hmC) and 5-methylcytosine (5-mC) enriched DNA fragments from control and PB treated mouse livers
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver.

Alternate Accession IDs

E-GEOD-40540

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE9444
Sleep deprivation and the brain
  • organism-icon Mus musculus
  • sample-icon 93 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Alternate Accession IDs

E-GEOD-9444

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16387
Licensing of PPARg-regulated gene expression by IL-4-induced alternative macrophage activation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Alternate Accession IDs

E-GEOD-16387

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE10026
High resolution gene expression profiling for simultaneous analysis of RNA synthesis, abundance and decay
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved principles of mammalian transcriptional regulation revealed by RNA half-life.

Alternate Accession IDs

E-GEOD-10026

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10744
Copy number variation and gene expression in the mouse
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon

Description

Copy number variation (CNV) of DNA segments has recently been identified as a major source of genetic diversity, but a more comprehensive understanding of the extent and phenotypic effect of this type of variation is only beginning to emerge. In this study we generated genome-wide expression data from 6 mouse tissues to investigate how CNVs influence gene expression.

Publication Title

Segmental copy number variation shapes tissue transcriptomes.

Alternate Accession IDs

E-GEOD-10744

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17667
Pou5f1 transcription targets in zebrafish
  • organism-icon Danio rerio
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development.

Alternate Accession IDs

E-GEOD-17667

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26600
Cycad Genotoxin Methylazoxymethanol (MAM) Modulates Cellular Pathways Involved in Cancer and Neurodegenerative Disease
  • organism-icon Mus musculus
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon

Description

Methylazoxymethanol (MAM), the genotoxic metabolite of the cycad azoxyglucoside cycasin, induces genetic alterations in bacteria, yeast, plants, insects and mammalian cells, but adult nerve cells are thought to be unaffected. We show that the brains of young adult mice treated with a single systemic dose of MAM display DNA damage (O6-methylguanine lesions) that peaks at 48 hours and decline to near-normal levels at 7 days post-treatment. By contrast, at this time, MAM-treated mice lacking the gene encoding the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT), showed persistent O6-methylguanine DNA damage. The DNA damage was linked to cell-signaling pathways that are perturbed in cancer and neurodegenerative disease. These data are consistent with the established carcinogenic and developmental neurotoxic properties of MAM in rodents, and they support the proposal that cancer and neurodegeneration share common signal transduction pathways. They also strengthen the hypothesis that early life exposure to the MAM glucoside cycasin has an etiological association with a declining, prototypical neurodegenerative disease seen in Guam, Japan, and New Guinea populations that formerly used the neurotoxic cycad plant for medicine and/or food. Exposure to environmental genotoxins may have relevance to the etiology of related tauopathies, notably, Alzheimers disease, as well as cancer.

Publication Title

The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.

Alternate Accession IDs

E-GEOD-26600

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact
Version 1.42.67-hotfix - .0.0